刘木伙 Muhuo Liu

副教授/Associate Professor

华南农业大学 数学系

简介  ABOUT

动态   NEWS

学术   ACADEMIC

刘木伙 (Muhuo Liu) 简历
华南农业大学,数学与信息(软件)学院,副教授,硕士研究生导师
男,1981年3月生,2014年于南京师范大学获理学博士学位,美国Mathematical Reviews评论员,主要从事结构图论和图谱理论等方面的研究,在《中国科学》、《J. Combin. Theory Ser. A》、《Adv. in Appl. Math.》《European J. Combin.》、《Electron. J. Combin.》、《Discrete Math.》、《Discrete Appl. Math.》、《Linear Algebra Appl.》、《Linear Multilinear Algebra》、《Graphs Combin.》等国内外数学学术刊物上发表或被接受科研论文90多篇,其中80多篇发表或被接受在SCI刊源期刊上。第一作者编写的专著《图谱的极值理论》于2017年由广东省科技出版社出版,其英文版于2018年由University of Kragujevac and Faculty of Science Kragujevac出版社出版。
      曾经参加或主持国家自然科学基金、国家自然科学青年基金、江苏省自然科学基金等项目的研究。于2010年入选华南农业大学青年骨干教师培养对象,2011年入选南京师范大学博士学术新人培养计划,2013年获博士研究生国家奖学金,2014年入选广东省高等学校“千百十人才培养工程”第八批校级培养对象,2015年入选广东省高等学校优秀青年教师培养计划。 

主持的课题:

(1)广东高校优秀青年创新人才培养计划项目(No. LYM10039,主持,3万): 图论的理论及其应用的研究,2011.01--2012.12;
(2)国家自然科学青年基金(11201156,主持,22万):图谱理论中若干问题的研究,2013.01-2015.12;
(3)2015年度广东省优秀青年教师培养计划(YQ2015027,主持,32万):对最小度有所约束的一些图的划分问题,2016.01—2018.12;
(4)广东省普通高校特色创新项目 (2017KTSCX020,主持,15万):图谱的优超理论,2018.01-2019.12. (5)广东省自然科学基金面上项目 (2022A1515011786,主持,10万):图谱确定性的研究,2022.01-2024.12.        
(6) 国家自然科学基金面上基金 (12271182,主持,46万 ):关于图结构的谱刻画问题的研究,2023.01-2026.12.

参与的课题:
(1) 广东省博士启动基金(No.5300084,排名第五,2万):组合矩阵论研究,2006.01—2007.12;
(2) 国家自然科学基金数学天元基金项目(No.10526019,排名第五,3万):组合数学-组合矩阵论研究,2006.01—2006.12;
(3)国家自然科学基金(No. 11071088,排名第三,25万),组合矩阵论的指数理论和谱理论,2011.01-2013.12;
(4)江苏省自然科学基金(No. BK20131357,排名第三,10万): 图的拓扑指标与图参数的极值问题及相关问题,2013.07-2016.06
(5)国家自然科学基金面上基金项目(No. 11571123,排名第三,50万):张量的本原性、本原指数及张量与超图谱若干问题的研究,2016/01-2019/12 

(I) 代表论文:
[1] M. Liu, H.-J. Lai, Kinkar Ch. Das,Spectral results on Hamiltonian problem,Discrete Math., 342 (2019) 1718-1730. (SCI)  
[2]Y. Yao, M. Liu (Corresponding author), Francesco Belardo, Chao Yang,Unified extremal results of topological indices and spectral invariants of graphs, Discrete Appl. Math., 271 (2019) 218–232. (SCI) [3]M. Liu, H. Shan, X. Gu, Spectral characterization of the complete graph removing a path, Discrete Appl. Math., 284 (2020) 499–512. (SCI)    
[4]M. Liu, X. Gu, Spectral characterization of the complete graph removing a path: Completing the proof of C\'amara-Haemers Conjecture, Discrete Math., 344(2021), 112-275.(SCI)     
[5] M. Liu, B.Xu, On a conjecture of Schweser and Stiebitz, Discrete Appl. Math., 295 (2021) 25–31. (SCI)  [6] M. Liu, C. Chen, Z. Stanić,On graphs whose second largest eigenvalue is at most 1,European J. Combin., 97 (2021) 103385 . (SCI)        
[7] B. Cheng, M. Liu (Corresponding author), B.-S. Tam, On the nullity of a connected graph in terms of order and maximum degree,Linear Algebra Appl., 632 (2022) 193– 232.(SCI)      
[8] M. Liu, B. Xu, On  connected partition with degree constraints, Discrete Math.,  345 (2022) 112680.(SCI)          
[9] M. Liu,X. Gu, Spectral strengthening of a theorem on transversal critical graphs, Discrete Math.,  345 (2022) 112717. (SCI)           
[10] X. Gu, M. Liu,A tight lower bound on the matching number of graphs via Laplacian eigenvalues,European J. Combin., 101 (2022) 103468.  (SCI)                                                             
 [11]M. Liu, C.Chen, Z. Stanić,Connected (K_4-e)-free  graphs  whose  second largest eigenvalue  does not exceed 1,European J. Combin., 115 (2024) 103775. (SCI)

[12] M.Liu, X. Gu, H.Shan, Z.Stanic, Spectral characterization of the complete graph removing a cycle, J. Combin. Theory Ser. A, 205 (2024), 105868. (SCI)  

[13] M. Zhai, M.Liu (Corresponding author), Extremal problems on planar graphs without k edge-disjoint cycles, Adv. in Appl. Math., 157 (2024) 102701. (SCI).   


(II) 其他的论文: 
 [1] B. Liu, Liu M.. On the spread of the spectrum of a graph,Discrete Math.,309 (2009),2727-2732. (SCI)
[2] M. Liu,B. Liu,Z. You, The majorization theorem of connected graphs,Linear Algebra Appl., 431(2009), 553-557. (SCI)
[3] M. Liu,B. Liu,The signless Laplacian spread, Linear Algebra Appl., 432(2010), 505-514. (SCI)
[4] M. Liu,B. Liu,On the k-th smallest and k-th greatest modified Wiener indices of trees,Discrete Appl. Math.,158 (2010), 699-705. (SCI)
[5] M. Liu, B. Liu,On the spectral radii and the signless Laplacian spectral radii of c-cyclic graphs with fixed maximum degree, Linear Algebra Appl., 435 (2011) 3045-3055. (SCI)
[6] M. Liu,The (signless Laplacian) spectral radii of connected graphs with prescribed degree sequences,Electron. J. Combin., 19(4) (2012), #P35 (SCI)
[7] M. Liu, Lihua You, Bolian Liu, The proof of a conjecture on the lewin number of primitive non-powerful signed digraphs, Linear Algebra Appl., 438 (2013), 2366-2377. (SCI).
[8] K.Ch. Das, K. Xu, M. Liu,On sum of powers of the Laplacian eigenvalues of graphs, Linear Algebra Appl., 439(2013), 3561-3575.(SCI)
[9] M. Liu, B. Liu,The second Zagreb indices of unicyclic graphs with given degree sequences,Discrete Appl. Math.,167 (2014), 217-221 .(SCI)
[10] M. Liu, H. Shan, K. Ch. Das, Some graphs determined by their (signless) Laplacian spectra, Linear Algebra Appl., 449(2014),154-165 (SCI).
[11] M. Liu, B. Liu,The majorization theorem of extremal pseudographs, Linear Algebra Appl., 459(2014), 13-22. (SCI)
[12] K. Ch. Das, M. Liu, H. Shan, Upper bounds on the (signless) Laplacian eigenvalues of graphs, Linear Algebra Appl., 459(2014),334-341. (SCI)
[13] M. Liu, B. Liu, B. Cheng, Ordering (signless) Laplacian spectral radii with maximum degrees of graphs, Discrete Math., 338 (2015), 159-163. (SCI)
[14] M. Liu, B. Xu, Bipartition of graph under degree constraints,Sci. China Math., 58(2015), 869–874. (SCI,《中国科学》英文版).
[15] K.Ch. Das,M. Liu,Complete split graph determined by its (signless) Laplacian spectrum,Discrete Appl. Math.,205(2016), 45-51.(SCI)
[16] H.Shan. M. Liu(Corresponding author), Laplacian spectral radius of c-cyclic graph and maximum vertex degree, Sci Sin Math, (46)2016, 1227–1240(中国科学(中文版)
[17] M. Liu, Y. Zhu, H. Shan, K. Ch. Das,The spectral characterization of butterfly-like graphs,Linear Algebra Appl., 513(2017),55-68.(SCI)
[18] M. Liu, K.Ch. Das,H. Lai,The spectral radii of c-cyclic graphs with n vertices, girth g and k pendant vertices,Linear Multilinear Algebra,65(2017),869-881. (SCI)
[19] G. Zhang,M. Liu, H. Shan, Which Q-cospectral graphs have same degree sequences, Linear Algebra Appl.,520(2017),274-285.(SCI)
[20] M.Liu, B. Xu,On partitions of graphs under degree constrains, Discrete Appl. Math., 226 (2017) 87-93.(SCI).
[21] M. Liu, Y.Yuan, L. You, Z. Chen, Which cospectral graphs have same degree sequences, Discrete Math., 341 (2018), 2969-2976. (SCI)
[22] M.Liu, K. Xu, X.-D. Zhang, Extremal graphs for vertex-degree-based invariants with given degree sequences,Discrete Appl. Math.,255 (2019) 267-277. (SCI)
[23] J. Ye, M. Liu(Corresponding author), Y. Yao, K.Ch. Das, Extremal polygonal cacti for bond Incident degree indices, Discrete Appl. Math.,257 (2019), 289-298. (SCI)
[24] B. Cheng, M. Liu(Corresponding author), Bolian Liu, Proof of a conjecture on the nullity of a connected graph in terms of order and maximum degree, Linear Algebra Appl., 587 (2020),291-301. (SCI)
[25] M. Liu, K.Cheng, I. Tomescu, Some notes on the extremal k-generalized quasi-unicyclic graphs with respect to Zagreb indices,Discrete Appl. Math., 284 (2020) 616–621. (SCI)
[26] M. Liu, I. Tomescu, J. Liu, Unified extremal results for $k$-apex unicyclic graphs (trees), Discrete Appl. Math., 288 (2021),35-49 (SCI).
[27] M. Liu, K. Cheng, B. Furtula, Minimum augmented Zagreb index of c-cyclic graphs, Discrete Appl. Math., 295 (2021) 32–38. (SCI) 
[28]C. Chen,  M. Liu(Corresponding author), X. Gu, K.C. Das,Extremal  augmented Zagreb index of trees with given numbers of vertices and leaves, Discrete Math., 345 (2022) 112753. (SCI)
[29] C.Chen, M. Liu(Corresponding author), X.Chen, W.Lin,On general ABC-type index of connected graphs, Discrete Appl. Math., 315 (2022) 27–35. (SCI)                                                                      
 [30] Y. Huang, M. Liu(Corresponding author), F. Belardo, The general spectral radii of (multicone-)graphs with prescribed degree sequence, Linear Multilinear Algebra, 70(2022), 4751–4777. (SCI)
[31]P. Wei, M. Liu(Corresponding author),Note on Sombor index of connected graphs with given degree sequence,Discrete Appl. Math., 330 (2023) 51–55. (SCI)                                                                
 [32]M. Liu, S.Pang, F.Belardoc, A.Ali,The k-apex trees with minimum augmented Zagreb index, Discrete Math., 346 (2023) 113390. (SCI)
[33] M. Liu, C.Chen, S.-G.Guo, J.Peng, T.Chen,The Aα-spectral radius of dense graphs,Linear  Multilinear Algebra,71(2023),1044–1053. (SCI)                                                                          
[34] P. Wei, M. Liu (Corresponding author), I.Gutman,On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023) 141–147. (SCI)                                                                   
 [35] H. Shan, M. Liu, On the relationship between shortlex order and Aa-spectral radii of graphs with  starlike branch tree,Discrete Math.,347 (2024) 113772. (SCI)      

                                                                                                                                                
(III) 更多的SCI论文:

[1]M. Liu,B. Liu,Degree series of the 3-harmonic graphs,Appl. Math. J. Chinese Univ. 23(2008),481-489
[2] B. Liu, Z. Chen, Liu M., On graphs with largest Laplacian index,Czechoslovak Math. J. 58(4)(2008), 949-960.(SCI).
[3] B. Liu, Liu M., Z. You,Erratum to "A note on the largest eigenvalue of non-regular graphs",Electronic J. Linear Algebra,18 (2009), 64-68. (SCI)
[4] M. Liu,B. Liu,New sharp upper bounds for the first Zagreb index,MATCH Commun. Math. Comput. Chem., 62 (2009), 689-698. (SCI)
[5] Liu M., B. Liu, Trees with the seven smallest and fifteen greatest Hyper-Wiener indices, MATCH Commun. Math. Comput. Chem., 63(2010), 151-170. (SCI)
[6] M. Liu, A note on D-Equienergetic graphs, MATCH Commun. Math. Comput. Chem., 64(2010),135-140 (SCI)
[7] M. Liu, A simple approach to order the first Zagreb indices of connected graphs,MATCH Commun. Math. Comput. Chem., 63 (2010),425-432. (SCI)
[8] M. Liu,Bounds on the spectral radius of the line distance matrix,MATCH Commun. Math. Comput. Chem., 63(2010), 717-724 (SCI).
[9] M. Liu, B. Liu, Some results on the Laplacian spectrum spectrum, Comput. Math. Appl., 59 (2010), 3612-3616. (SCI,EI)
[10] M. Liu,B. Liu,Q. Li,Erratum to The trees on vertices with the first to seventeenth greatest Wiener indices are chemical trees',MATCH Commun. Math. Comput. Chem., 64 (2010), 743-756. (SCI)
[11] M.Liu,X. Tan, B.Liu,The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices,Czechoslovak Math. J.,60(3) (2010), 849-867. (SCI)
[12] M.Liu, B. Liu, On the variable Wiener indices of trees with given maximum degree, Math.Comput.Modelling, 52 (2010), 1651-1659. (SCI,EI)
[13] M. Liu,B.Liu,On the Wiener polarity index,MATCH Commun. Math. Comput. Chem., 66 (2011), 293-304 (SCI).
[14] M. Liu, B. Liu,F. Wei,Graphs determined by its (signless) Laplacian spectra, Electronic J. Linear Algebra, 22 (2011), 112-124. (SCI)
[15] M. Liu, B. Liu, A note on sum of powers of the Laplacian eigenvalues of graphs, Appl. Math. Lett., 24 (2011), 249-252 (SCI).
[16] M.Liu,B.Liu, The second Zagreb indices and Wiener polarity indices of trees with given degree sequences,MATCH Commun. Math. Comput. Chem., 67 (2012),439-450 (SCI)
[17] M.Liu, B.Liu, New method and new results on the order of spectral radius, Comput. Math. Appl., 63(2012) 679-686 (SCI,EI).
[18] M. Liu, B. Liu, Some results on the majorization theorem of connected gaphs,Acta Math.Sin.,Eng. Ser., 28 (2012),371-328.(SCI).
[19] M. Liu, B. Liu, Some results on the spectral radii of trees, unicyclic and bicyclic graphs, Electronic J. Linear Algebra,23 (2012),327-339 (SCI).
[20] M.Liu,Some graphs determined by their (signless) Laplacian spectra,Czechoslovak Math. J.,62(4) (2012), 1117-1134 (SCI).
[21] M.Liu, B.Liu, On sum of powers of the signless Laplacian eigenvalues of graphs, Hacet. J. Math. Stat., 41(4)(2012), 527-536 (SCI).
[22] M. Liu, The (signless) Laplacian spectrum of c-cyclic graphs with n vertices and k pendant vertices,Electronic J.Linear Algebra, 23(2012),942-952.(SCI)
[23] B. Liu, M. Liu, Z. You,The majorization theorem for signless Laplacian spectral radii of connected graphs, Graphs Combin., 29(2013),281-287.(SCI).
[24] M. Liu, F.Li, K.Ch. Das, Ordering the Zagreb coindices of connected graphs, MATCH Commun. Math. Comput. Chem., 70 (2013),939-948.(SCI)
[25] M.Liu, B.Liu, A note on the LEL-equienergetic graphs, Ars Combin., 113 (2014), 435-439 (SCI).
[26] H.Li, Y. Liang, M. Liu, B. Xu, On minimum balanced bipartitions of triangle-free graphs, J. Comb. Optim. 27 (2014), 557-566. (SCI).
[27] M. Liu, B.Liu, X. Tan, The first nine maximal LEL-invariant of graphs with n vertices, Util. Math., 93(2014), 153-160. (SCI)
[28] M.Liu, F. Wei, B.Liu,On the Laplacian spectral radii of tricyclic graphs,Ars Combin., 114(2014), 129-143. (SCI)
[29] M. Liu, B. Liu, The nine smallest hyper-Wiener indices of trees and the eight smallest Wiener (hyper-Wiener) indices of unicyclic graphs,Util. Math., 95 (2014): 129-139.(SCI)             [30] M. Liu, B.Liu, On the signless Laplacian spectra of bicyclic and tricyclic graphs,Ars Combin.,120(2015), 169-180. (SCI)
[31] I. Gutman, K. Xu, M.Liu, A congruence relation for Wiener and Szeged indices, Filomat, 29:5(2015),1081-1083. (SCI).
[32] M. Liu,B. Liu,R.Li,The strong pseudochromatic number of a graph, Util. Math.,98 (2015),3-21.(SCI)
[33] M. Liu, B.Xu, On judicious partitions of graphs,J. Comb. Optim.,31 (2016), 1383- 1398.(SCI).
[34] K.Ch. Das,M. Liu(Corresponding author),Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs,Czechoslovak Math.J.,66(2016), 1039–1048. (SCI)
[35] K. Ch. Das,M. Liu,Kite graphs determined by their spectra,Applied Math. Comput., 297(2017),74-78. (SCI)
[36] K.Ch. Das,M.Liu (Corresponding author),Minimal extremal graphs for addition of algebraic connectivity and independence number of connected graphs,Filomat,31(2017), 5545- 5551.(SCI)
[37] M.Liu, Y.Zhu, H.Shan, K.Ch. Das, Erratum to "The spectral characterization of butterfly-like graphs",Linear Algebra Appl., 539(2018), 274-276].(SCI)
[38] M. Liu,K.Ch. Das,On the ordering of distance-based invariants of graphs,Appl. Math. Comput., 324(2018),191-201. (SCI)
[39] K.Ch. Das,M.Liu,On two conjectures of spectral graph theory,Bull. Iran. Math. Soc. , 44(2018),43-51. (SCI)
[40] Y. Yao,M.Liu (Corresponding author),K.Ch. Das,Y.Ye,Some extremal results for vertex-degree-based invariants,MATCH Commun. Math. Comput. Chem.,81 (2019) 325-344. (SCI)
[41] Y.Yao, M. Liu, X.Gu,Unified extremal results for vertex--degree--based graph invariants with given diameter, MATCH Commun. Math. Comput. Chem.,82(2019), 699-714.(SCI)
[42] M.Liu,Y.Yuan,K.Ch. Das, The fan graph is determined by its signless Laplacian spectrum, Czechoslovak Math. J.,70 (2020), 21-31.(SCI)
[43] M.Liu, Y. Yao, K.Ch. Das,Extremal results for cacti, Bull. Malays. Math. Sci. Soc.,43(2020), 2783-2798. (SCI)
[44] M. Liu, G.Zhang, K.Ch. Das, Some properties of algebraic connectivity, Nation. Academy Sci. Lett., 43(2020), 537–542. (SCI)
[45] M. Liu, Y. Wu, H.-J. Lai,Unified spectral Hamiltonian results of balanced bipartite graphs and complementary graphs,Graphs Combin., 36(2020),1363-1390. (SCI)
[46] X. Tan, M. Liu(Corresponding author), J. Liu, On the Maximal General ABC Index of Graphs with Fixed Maximum Degree, MATCH Commun. Math. Comput. Chem., 85 (2021), 121-130. (SCI).
[47] K.Cheng,M.Liu,Fr.Belardo,The minimal augmented Zagreb index of k-apex trees for k {1,2,3},Appl. Math. Comput.,402(2021),126139. (SCI)
[48] M.Liu, K.C.Das, G.Zhang, The maximum number of spanning trees of a graph with given matching number, Bull. Malays. Math. Sci. Soc., 44 (2021) 3725–3732. (SCI)  
[49]W. Zhou, S. Pang, M. Liu,A. Ali,On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 88 (2022), 625–642.  
[50]Y. Lan, P.Wei, M.Liu, C.Chen, Maximum and minimum Lanzhou index of c-cyclic graphs, MATCH Commun. Math. Comput.Chem., to appear. (SCI)


(IV) 发表的SCI综述:
[1] M.Liu, B.Liu, A survey on recent results of variable Wiener index,MATCH Commun. Math. Comput. Chem., 69(2013), 491-520. (SCI).
[2] K.Xu, M.Liu, K.Ch. Das, I.Gutman, B.Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem.,71(2014), 461-508. (SCI).
[3] M.Liu, B.Liu, K.Ch. Das, Recent results on the majorization theory of graph spectrum and topological index theory-a survey, Electronic J.Linear Algebra, 30(2015), 402-421. (SCI).

(V) 学术会议与学术交流:
[1] 2012年7月15日至2012年7月19日,洛阳,第五届全国组合数学与图论大会:Spectral radius and maximum degree
[2] 2013年5月30日至6月2日,福州,图与超图谱理论国际研讨会议:The Theory and Application of the Majorization Theorems
[3] 2013年7月17日至7月21日,韩国成均馆大学,韩国水原市:The Theory and Application of the Majorization Theorems
[4] 2013年7月28日至7月31日,青海省西宁市:International Conference on Algebric Graph Theory and its Applications:The (signless) Laplacian spectral radii of c-cyclic graphs with n vertices and k pendant vertices
[5] 2014年11月8日至11月10日,广州,第六届全国组合数学与图论大会: 对最小度有所约束的图的划分问题
[6] 2015年07月18日至07月19日,兰州,第六届图论与组合算法国际研讨会(GTCA2015):Some results on judicious k-partitions of graphs
[7] 2016年 4月8至9日, Wright State University, Dayton, MIGHTY LVII (57th MIdwest GrapH TheorY Meeting,The (signless) Laplacian spectral radii of c-cyclic graphs with n vertices, girth g and k pendant vertices
[8] 2016年12月17日至18日,湖南长沙,长沙·2016代数图论及其应用研讨会:谱半径排序的统一方法和统一结果
[9] 2017年11月11月3日至11月5日,福州,第九届海峡两岸图论与组合数学学术会议
[10] 2017年11月15日,暨南大学, 报告题目:谱半径排序的统一方法和统一结果
[11] 2017年12月4日,华南师范大学,报告题目:谱半径排序的统一方法和统一极图
[12] 2018年1月8日,中山大学,报告题目:Some results on partition problem of graphs
[13] 2018年1月16日,南京航空航天大学理学院,报告题目:The majorization theory and its application
[14] 2018年2月27日,韩国成均馆大学,报告题目:The majorization theory and its application
[15] 2018.07.06-2018.07.08,珠海中山大学,广东省组合图论学术会议,报告题目:Unified methods and results on the spectral property of hamiltonian problem
[16] 2018.08.23-2018.08.27,合肥,第八届全国组合数学与图论大会,报告题目:Unified methods and results on the spectral property of hamiltonian problem
[17] 2018年10月12日-14日,山东理工大学,2018图论及其应用研讨会,报告题目:Unified extremal results of topological index and graph spectrum
[18] 2018年10月26日-28日,河海大学,2018南京图论及其应用研讨会,报告题目:Which degree sequence is determined by its graph spectrum
[19] 2018年12月21日-22日,浙江理工学院,2018杭州图论及其应用研讨会,报告题目:Unified extremal results of topological index and graph spectrum
[20] 2019年2月20日-25日,韩国成均馆大学,报告题目:Unified extremal results of topological index and graph spectrum.
[21] 2019年9月20日-24日,河南理工工大学,2019年代数组合国际研讨会,报告题目:The majorization theory of graph spectrum,
[22] 2019年11月20-24日,佛山, 中国数学会第十三次全国会员代表大会.
[23] 2019年12月6日-8日,安徽大学,第三届合肥图与组合前沿进展研讨会,报告题目:Some partition problems of graphs with minimum degree condition。
[24] 2019年12月16日,广州民航,2019年广航院组合数学与图论学术交流报告会.
[25] 2020年10月31日,华南理工大学,Unified methods and results on the spectral property of hamiltonian problem. 
[26] 2020年11月28日,上海同济大学,Some results on DS-graphs. 
[27] 2021年4月16-19日,滁州学院,第九届矩阵与图谱理论研讨会,On graphs whose second largest eigenvalue is at most 1

CONTACT BY SCHOLAT
想与我进行学术交流?
立即通过学者网的 工具与我联系!
Https://www.scholat.com/liumuhuo
联系地址 :   数学与信息学院数学系
扫一扫,访问我的主页
  • Contact by SCHOLAT

SCHOLAT.com 学者网
ABOUT US | SCHOLAT