广东工业大学副教授陈云华2022年招生信息
来源: 陈云华/
广东工业大学
1683
9
0
2022-04-05

个人简介:

陈云华,博士,INNS、CCF会员,硕士生导师,广东工业大学副教授。主要研究方向为神经形态类脑计算、计算机视觉、深度学习,在IEEE T COGN DEV SYST、NEURAL COMPUT、PATTERN RECOGN、J VIS COMMUN IMAGE R、ICPR 、《电子学报》、《中国图象图形学报》、《控制理论与应用》、《计算机科学》等国内外重要学术期刊/会议发表相关文章50余篇。主持省部级项目6项。获得授权发明专利和实用新型专利共3项、软件著作权1项。2016年赴英国曼切斯特大学访问,师从英国三院院士、ARM之父Steve Furber教授,现为NEURAL COMPUT、《电子与信息学报》等多个学术期刊的审稿人。

个人主页: https://yzw.gdut.edu.cn/info/1120/1851.htm

学术兼职:

INNS(International Neural Network Society)会员,中国计算机学会会员,中国人工智能协会可拓学专委会委员

招生领域:

计算机科学与技术、人工智能、软件工程

招生方向:

一、计算机视觉方向:

1.  针对DVS(动态视觉传感器)数据,对高速运动目标进行检测与识别的技术(包括深度学习方法和脉冲神经网络方法);

2.  针对传统视频图像进行处理的计算机视觉技术(包括传统方法和深度学习方法)。

二、SNN ( 脉冲神经网络)方向:

1.  基于DNN-SNN转换的SNN及其优化;

2.  基于梯度下降的SNN训练算法;

3.  基于STDP的SNN训练算法。

招生要求:

1.  已通过广东工业大学及计算机学院复试;

2.  具有良好的数学基础、编程能力和文字写作能力;

3.  愿意吃苦、吃亏,有意愿攻读博士的生源优先考虑。

指导学生情况:

1.  毕业研究生去向公司有:华为技术有限公司、杭州海康威视数字技术股份有限公司等等。

2.  指导的硕士研究生于2019年获得国家奖学金。

3.  指导本科创新项目若干项,所指导的本科生曾于2014年获得第2届感动广工大十大人物称号。

4.  指导的本科生团队参加2014全国并行应用挑战赛荣获中南赛区一等奖,参加2012粤嵌杯广东省嵌入式物联网设计大赛荣获一等奖。

5.  目前有在研研究生7人。

......

主要项目:

1.  广东省自然科学基金项目,转换式深度脉冲卷积网络多性能指标优化研究,(2021A1515012233)。

2.  广东省自然科学基金项目,连续自发式表情特征的深度学习表示研究,(2016A030313713)。

3.  广东省自然科学基金项目,低质量监控视频人脸超分辨率算法研究,(2014A030310169)。

4.  广州市科技计划项目,支持小间距LED显示的多屏实时处理器系统的研发,(2014Y2-00211)。

5.  广东省科技计划项目,兴宁市水口镇中小微企业信息化公共服务平台建设,(2013B040500008)。

6.  广东省科技计划项目,适用于恶劣环境的视频监控系统开发与产业化,(2014B090901061)。

代表性论文:

1.  Efficient Motion Symbol Detection and Multi-kernel Learning for AER Object Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2022. doi: 10.1109/TCDS.2021.3122131.

2.  An adaptive threshold mechanism for accurate and efficient deep spiking convolutional neural networks, Neurocomputing, 2022.

3.  Novel shrinking residual convolutional neural network for efficient accurate stereo matching, Journal of Visual Communication and Image Representation, 2020.

4.  Improving the antinoise ability of DNNs via a bio-inspired noise adaptive activation function rand softplus, Neural Computation, 2019.

5.  Robust and Energy Efficient Expression Recognition Based on Improved Deep ResNets, Biomedical Engineering, 2019.

6.  Occlusion Expression recognition based on non-convex low-rank double dictionaries and occlusion error model. Signal Processing: Image Communication, 2019.

7.  Single image rain removal based on depth of field and sparse coding, Pattern Recognition Letters, 2018.

8. Single image rain removal based on depth of field and sparse coding, 24th International Conference on Pattern Recognition (ICPR), 2018.

9.  An Image Rain Removal algorithm based on the depth of field  and sparse coding, depth of field and sparse coding, the 24th International Conference on Pattern Recognition (ICPR), 2018.

10.  双向特征融合与特征选择的遥感影像目标检测, 电子学报,2022.

......

有兴趣的同学请将简历发送至:  5350299@qq.com    


登录用户可以查看和发表评论, 请前往  登录 或  注册
SCHOLAT.com 学者网
免责声明 | 关于我们 | 联系我们
联系我们: