本研究室「HuangLab @ SYSU」关于“智能边缘计算 (Intelligent Edge Computing)”的两篇研究论文分别被 IEEE Communications Magazine(影响因子10.356,中科院一区) 与 IEEE Internet of Things Journal (影响因子9.5,中科院一区) 接收。两篇论文,本人均为通讯作者。
论文的题目分别是:
"Real-Time Fault-Detection for IIoT Facilities using GBRBM-based DNN" (下载链接)
"Machine Fault Detection for Intelligent Self-Driving Networks" (下载链接)
在这两篇论文里,我们旨在为边缘计算构建一种称为“自驱动网络(Self-Driving Networks, SelfDN)”的机制。该机制主要应用智能算法来减轻人类管理员对网络的干预,让边缘计算网络可以实现“自发现、自决策、自配置 与 自恢复”的闭环网络优化。可见,智能算法在“自驱动网络”架构里起着感知发现、推理、决策等重要作用。
目前我们暂且只对“发现”这一环节做出了初步探索,并以工业物联网(IIoT)为边缘计算的应用场景来展示机器故障的“探测发现”过程。其他环节里的更多科学问题,还有待后续的更多研究者来参与进来并提出解决方案。
两篇论文使用的用于预测数据中心服务器故障的数据集,以及数据处理代码,请从研究室 HuangLab 的【Datasets】页面下载:http://xintelligence.pro/datasets
黄华威
中山大学,软件工程学院
[English Version]
Dear Colleagues,
Glad to see that our paper entitled "Real-Time Fault-Detection for IIoT Facilities using GBRBM-based DNN" (URL) has been online published by IEEE Internet of Things Journal (SCI hashtagIF=9.5). This work is a showcase of continuous intelligence in "Self-Driving" Networks.hashtag
Another paper entitled "Machine Fault Detection for Intelligent Self-Driving Networks" (URL) has been accepted by IEEE Communications Magazine (SCI IF= 10.356). We expect that this article can inspire booming studies of Self-Driving Networks (SelfDN).
By the way, SelfDN is an emerging networking paradigm that advocates the self-discovery, self-analysis, self-configuration, and self-correction in the target networks without human intervention.
Please refer to more details from my project log -> [URL]
Please feel free to download the datasets and the processing codes from the [Datasets] page of X-Intelligence Lab: http://xintelligence.pro/datasets
Thank you for your attention!
Best regards,
Huawei Huang,
Associate Professor,
SSE, Sun Yat-sen University, China