深度学习在岩土工程中的应用
来源: 科宇/
北京软研国际信息技术研究院
336
0
0
2024-07-01

 

 

关于举办“深度学习在岩土工程中的应用与实践”专题培训的通知

一、背景

在深度学习与岩土工程融合的背景下,科研的边界持续扩展,创新成果不断涌现。从基本物理模型的构建到岩土工程问题的复杂模拟,从数据驱动的分析到工程问题的智能解决,深度学习正以前所未有的动力推动岩土工程领域的革新。据调查,目前在岩土工程领域内,深度学习的应用主要集中在以下几个方面:

  • 预测模型开发:使用深度学习来预测土壤和岩石的力学行为,例如土压力、剪切强度等。
  • 数据驱动特性分析:通过机器学习算法分析大量实验数据,以识别土壤和岩石的非线性特性。
  • 地质结构识别:应用深度学习技术如卷积神经网络(CNN),识别和分类地质结构和岩石类型。
  • 地下设施稳定性分析:利用深度学习模型评估地下设施(隧道、矿井)的稳定性和潜在风险。
  • 环境影响评估:使用深度学习模拟和预测岩土工程活动对环境(地下水流、土壤污染)影响。
  • 灾害风险评估:应用深度学习模型来评估地震、滑坡等自然灾害对岩土工程结构的潜在风险
  • 智能监测和诊断:利用深度学习进行岩土工程结构的实时监测,及时发现问题并进行诊断
  • 自动化设计和优化:使用深度学习算法自动设计岩土工程解决方案,优化工程设计参数。

为促进科研人员、工程师及产业界人士对深度学习在岩土工程领域应用技术的掌握,特举办“深度学习在岩土工程中的前沿应用与实践”专题培训会,本次培训会议主办方为北京软研国际信息技术研究院,承办方互动派(北京)教育科技有限公司,会议会务合作单位为北京中科四方生物科技有限公司,具体相关事宜通知如下:

 

、培训对象

地质学、建筑科学与工程、矿业工程、安全科学与灾害防治、公路与水路运输、水利水电工程、石油天然气工业、地球物理学、环境科学与资源利用、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。

 

三、培训大纲:

“深度学习在岩土工程中的应用与实践”专题培训大纲

 

  

岩土工程

物理模型基础

  • 岩土工程中的基本物理模型及工程问题
    • 饱和土的一维渗流固结模型(扩散方程)及实际工程应用
    • 达西定律与饱和土渗流方程(Laplace equation)及适用性
    • 非饱和土渗流数学模型(Richards方程)及实际工程应用
    • 工程应用中的正问题与反问题,通过具体案例区分
  • 基本物理模型的求解方法
    • 边界条件:通过图解和实际工程案例,讲解边界条件在物理模型中的作用,如无流边界、狄利克雷边界等。
    • 线性方程的解析解法
      • 直接解法:分离变量法及行波变换法
      • 间接解法:积分变换法

实战演练:分离变量法求固结方程的解析解

    • 非线性方程的解析解法
      • 直接解法:双线性方法
      • 间接解法:反散射变换

实战演练:双线性方法求KdV方程的解析解

    • 线性与非线性方程的数值解法
      • 有限差分法
      • 有限单元法
      • 谱方法

实战演练:时间分布Fourier方法求Boussinesq方程的数值解

Python神经网络构建基础

 

  • Python基本指令及库
    • Python基础:通过交互式编程环境,教授Python基础,包括数据类型和逻辑运算等。
    • 科学计算库:介绍Numpy和Matplotlib,并讲授如何使用它们进行科学计算和数据可视化。

实战演练:基于简单Numpy指令解决岩石图像分类问题

    • 神经网络构建:通过简单的实例,如使用Numpy构建感知机,教授神经网络的基本概念。
    • 深度学习框架:通过Tensorflow和Pytorch的实例,教授如何构建和训练用于岩土工程问题的深度学习模型。

实战演练:基于Pytorch模块求解渗透系数及其影响因素间关系的量化模型。

 

数据—物理

双驱动神经网络

  • 深度学习基本原理与数据—物理双驱动神经网络
    • 深度学习基础
      • 神经元及激活函数
      • 前馈神经网络与万能逼近定律
      • 多种深度神经网络
      • 自动微分方法
      • 深度神经网络的损失函数
      • 最优化方法
    • 数据—物理双驱动神经网络方法
      • 物理信息神经网络(PINN)的工作原理及应用介绍
      • 深度算子网络(DeepONet)的工作原理及应用介绍
      • 物理深度算子网络(PI-DeepONet)的工作原理及应用介绍

实战演练:利用DeepXDE框架解决饱和土体的固结问题

案例实践

论文复现

  • 动手实践:论文复现

论文实例解读与实战(一):PINN模型在固结问题中的应用

参考文献:Application of improved physics-informed neu-ral networks for nonlinear consolidation problems with continuous drainage boundary conditions

  • 神经网络架构的选择与设计
  • 固结方程作为约束的损失函数设计
  • 训练及预测
  • 构建并训练一个固结问题的PINN模型
  • 硬约束边界条件

论文实例解读与实战(二):PINN模型在非饱和渗透模拟中的应用

参考文献:Surrogate modeling for unsaturated inltration via the physics and equality-constrained articial neural network

  • PINN的改进—PECANN模型
  • 损失函数的设计:数据拟合项与物理定律项的平衡
  • 训练数据的生成:合成数据与实验数据(多保真PINN模型)
  • PINN用于非饱和渗透模拟的优势(不确定性问题)

论文实例解读与实战(三):PINN模型在非线性波动方程中的应用

参考文献:Explorations of certain nonlinear waves of the  Boussinesq  and  CamassaHolm  equations  using physics-informed neural networks

  • Boussinesq方程与Camassa-Holm方程的数值求解难点
  • PINN的改进—MPINN模型
  • PINN的优势、劣势及未来发展方向


四、主讲老师

双一流及985工程建设高校副教授、硕导。主持和参与国家及省自然科学基金多项,发表 SCI 检索论文30余篇,论文总共他引900余次。主要从事岩土工程数值模拟方法研究。在土体基本理论与本构关系、人工智能机器学习在岩土工程中的应用等方面积累了丰富的经验。

五、培训时间

2024 年 7月 27日-7月28日  在线直播(授课2天)

2024 年 8月 03日-8月04日  在线直播(授课2天)

六、报名费用: 

每人¥4500元(含报名费、培训费、资料费)

2024628日前报名缴费可享受200元早鸟价优惠;

参加过我单位举办的其它课程的老学员,可享受额外200优惠

费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;

如需开具会议费的单位请联系招生老师索取会议邀请函;

七、增值服务 

1、凡报名学员将获得本次培训电子课件及案例模型文件

2、培训结束可获得本次所学专题课程全部无限次回放视频;

3、参加培训并通过试的学员,可以获得:主办方北京软研国际信息技术研究院培训中心颁发的《深度学习在岩土工程中的应用与实践》专业技能结业证书;

八、联系方式:

官方联系人:互动派科宇老师             电话、微信13520456594              

官方座机:010-56245524              官方网址:www.hdpaii.com

【注】开课前一周会务组统一通知;开课前一天会将直播链接及上机账号发至您微信。

 


登录用户可以查看和发表评论, 请前往  登录 或  注册
SCHOLAT.com 学者网
免责声明 | 关于我们 | 联系我们
联系我们: