Biography

Ran Li was born in 1988. He received his B.E. degree in electronic engineering from Huanghe Science and Technology College, Zhengzhou, China, and his Ph.D degree in signal processing from Nanjing University of Posts and Telecommunications, Nanjing, China. Currently, he is an Associate Professor of the School of Computer and Information at the Xinyang Normal University, China. His research interests include image and video processing, low-complex video coding, compressed sensing, multimedia security, deep learning, and IoT. He is serving as a professional reviewer for over 20 well-reputed journals including IEEE Transactions on Industrial Informatics, Future Generation Computer Systems, Information Sciences, Pattern Recognition Letters, Computer Communications, Journal of Medical Systems, Journal of Real-Time Image Processing, Pervasive and Mobile Computing, IEEE Access, Computers and Electrical Engineering, Multimedia Tools and Applications, IET Signal Processing, Journal of Ambient Intelligence and Humanized Computing, EURASIP Journal on Image and Video Processing, Electronics Letters, Journal of Computational Science, Wireless Networks, International Journal of Numerical Modelling: Electronic Networks, and Devices and Fields.

Research Topics: Image and Video Processing; Low-complex Video Coding; Compressed Sensing, Multimedia Security; Deep Learning; IoT

Email: liran@xynu.edu.cn

[中文个人简历下载] [Download English CV]

Work Experience

2014/12 -- Present

Associate Professor, School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan, China

2016/09 -- 2017/09

Post-doctor, School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China

Professional Activities

Reviewing for: [Publons Profile]

IEEE Transactions on Industrial Informatics (SCI IF 6.764)

IEEE Transactions on Broadcasting (SCI IF 3.765)

Future Generation Computer Systems (SCI IF 3.997)

Information Sciences (SCI IF 4.832)

Pattern Recognition Letters (SCI IF 1.955)

Computer Communications (SCI IF 3.338)

Journal of Medical Systems (SCI IF 2.456)

Journal of Real-Time Image Processing (SCI IF 2.010)

Pervasive and Mobile Computing (SCI IF 2.349)

IEEE Access (SCI IF 3.244)

Computers and Electrical Engineering (SCI IF 1.570)

Multimedia Tools and Applications (SCI IF 1.530)

IET Signal Processing (SCI IF 1.298)

Journal of Ambient Intelligence and Humanized Computing (SCI IF 1.588)

EURASIP Journal on Image and Video Processing (SCI IF 1.742)

Electronics Letters (SCI IF 1.155)

Journal of Computational Science (SCI IF 1.748)

Wireless Networks (SCI IF 1.584)

International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (SCI IF 0.622)

Research Grants

2016/01 -- 2018/12

P1, National Natural Science Foundation of China 61501393, Saliency-Aware Frame Rate Up-Conversion by Multi-Priors Fusion of Motion-Compensated Interpolations

2017/01 -- 2019/12

P2, National Natural Science Foundation of China 61601396, Compressed sensing MRI with matrixing the phase regularization parameter

2011/01 -- 2014/04

P1, Jiangsu Province Postgraduate Innovation Project CXZZ_0466, Bayesian Learning based Distribution Video Compressive Sensing

博士学位论文

博士学位论文题目:图像与视频压缩感知研究

博士生导师:朱秀昌

内容提要:我的博士课题集中于“图像与视频压缩感知”的研究。在我的导师朱秀昌教授的建议下,我尝试利用压缩感知原理开发低复杂度视频编码技术。传统观点认为压缩感知意义在于信号在采集过程中即被压缩,它更具有价值的研究方向应是压缩感知成像问题(例如,单像素相机、磁共振成像等),因此,将压缩感知应用于全采样图像视频编码面临着极高争议,尤其是将其与越来越高效的传统视频编码技术作比较。实际上,我并不在意该博士课题具有多大的应用前景,更加吸引我的是基于压缩感知的视频编码研究包含了大量图像与视频处理领域中的热点问题,例如,图像稀疏表示、字典学习、边信息生成算法等。我的博士研究工作主要贡献如下:(1)五种图像压缩感知测量与重建系统:分块测量-分块重建;分块自适应测量-分块重建;(2)整帧测量-整帧重建;分块测量-整帧重建;分块自适应测量-整帧重建;(3)两种图像重建算法:低复杂度的线性重建算法;基于自适应PCA基底的SPL算法;(3)两种低复杂度视频编码系统:基于CS的Wyner-Ziv编解码器;DISACOS系统;(4)一种联合压缩感知视频重建算法;(5)四种边信息生成算法(即帧率提升算法)。

[博士学位论文PDF下载]

CONTACT BY SCHOLAT
You can communicate with other scholars through Inbox , and you can also communicate by Instant Messaging .
http://www.scholat.com/liran358
Room #514, Computer Building, Nanhu Road #237, Shihe District, Xinyang, Henan, China
SCAN the QR Code
Visit My Homepage
SCHOLAT.com 学者网
ABOUT US | SCHOLAT