清华大学施路平教授作“面向人工通用智能的类脑计算”的主题报告

         11月1日上午,在第十九届中国计算语言学大会(CCL2020)上,清华大学类脑计算研究中心主任施路平作了题为《面向人工通用智能的类脑计算》的主题报告,从类脑计算研究的原因、内容和方法三方面分析了类脑计算、芯片及系统研究所面临的挑战和可能的解决方法,重点讨论了如何将脑科学和计算机融合,以双脑驱动的类脑计算推动人工通用智能的研究。


图1 :第十九届中国计算语言学大会上的施路平

为什么做类脑计算

近年来,类脑计算研究受到了越来越多的关注。类脑计算,是借鉴生物神经系统信息处理模式和结构的计算理论、体系结构、芯片设计以及应用模型与算法的总称。其重要性正如欧盟人脑旗舰研究计划项目所指出的:“在未来10到20年内,谁要引领世界经济,谁就必须在这个领域领先。”改变计算机体系架构,发展新的计算机架构势在必然。除此之外,人工智能的三次浪潮——神经网络,第五代神经网络计算机以及深度学习,都与“脑”紧密相关,类脑计算源于人工智能技术的发展需求。

目前的人工智能虽得到快速发展,但仍面临着诸多问题,比如,在语音输入时,机器无法判断间隔,无法识别口误和口音,这是因为机器并没有真正理解语言。施路平表示,理解不是一个单独、客观的过程,它与主体有关,与人类自身的知识结构和经历有关。因此,需要突破单一结构的智能研究。

图灵完备性和冯-诺依曼体系结构是通用计算机技术能够飞速发展并持续繁荣的关键因素——几乎所有的高级编程语言都是图灵完备的,冯-诺伊曼架构通用处理器则可以通过图灵完备的指令集实现图灵完备性。研究了图灵和冯诺依曼等人的早期著作和文章后,施路平发现,图灵等人提出的人工智能的愿景,都是发展通用智能。他认为,目前的人工智能具有非常好的发展契机,其原因包括:

1. 随着先进精密仪器的发展,人类对脑的理解越来越多,我们似乎到了一个理解脑的关口。

2. 超级计算机的发展为我们提供了更好的仿真模拟环境。

3. 大数据和云计算提供了一个和脑复杂度近似的世界,两者相互促进,共同发展。

4. 新型纳米器件可以制造出和人脑神经元能耗差不多级别的器件。

图灵奖得主Geoffrey Hinton认为,克服目前人工智能发展局限的关键是,搭建“一个连接计算机科学和生物学的桥梁”,该思想与施路平团队所提出的“双脑融合”的思想一致。


图2:脑科学的战略意义

类脑计算主要做什么

现有类脑计算系统方面的研究多聚焦于具体芯片、工具链、应用和算法的创新实现,而对系统基础性问题,例如计算完备性、系统层次结构等思考不足,导致软硬件紧耦合、应用范围不明确等一系列问题。但从现有通用计算机的发展历史与设计方法论来看,完善的计算完备性与软硬件去耦合的层次结构是计算系统蓬勃发展的计算理论与系统结构基础。

类脑计算的研究涵盖算法、硬件、芯片和系统等不同层面,是美、英、德等国的重点研究领域。从计算机和互联网发展来看,类脑计算的发展需要芯片、软件工具链、操作系统和应用的协同发展。施路平认为,芯片中的信息如何来承载、存储、计算和利用是类脑芯片的关键,而软件的核心技术问题是软件环境中信息流如何分配、交流、调度和控制。


图3:近年来类脑计算的研究进展

施路平表示,在脑科学的发展中,类脑的精髓是提供一个“方向感”,指导人类的探索方向。

怎么做类脑计算

类脑计算面临的首要问题是,如何在不理解人脑机制的情况下发展类脑计算系统?

施路平认为,即使我们不知道大脑的基本原理,但我们知道每个神经元对外连接数目超过一千,换句话说,是利用空间复杂度,另外,对时间编码可引入时空复杂度。基于此,清华大学提出通用类脑计算框架,通过增加类脑芯片,以实现计算机架构处理结构化信息,类脑芯片处理非结构化信息的任务。这样,即使不了解大脑结构,也可以创造出一个新的计算架架构。


图4:清华大学通用类脑计算架构

新的计算机架构考虑了时空复杂性。计算机驱动的ANN技术能够很好地反映空间复杂度,像脑一样工作的SNN更多反映了时空复杂度,将脑科学驱动和计算机方法结合起来,是ANN和SNN融合的范例。


图5:通用类脑计算的神经网络模型

目前,清华大学正在研究基于类脑计算的云脑。基于现有服务器搭建云脑,该云脑将具有独立数据库、知识图谱和软件工具链,在解决五类基本问题后逐步发展。


图6:类脑计算云脑

最后,施路平表示,目前计算机和人工智能的发展所面临的挑战需要我们发展类脑计算,而双脑融合驱动是类脑计算发展的关键,类脑计算需要理论、芯片、软件、系统和应用协同发展,人工通用智能面向各行各业,双脑驱动的类脑计算可以赋能各行各业。


登录用户可以查看和发表评论, 请前往  登录 或  注册
SCHOLAT.com 学者网
免责声明 | 关于我们 | 用户反馈
联系我们: